Exercise Sheet Solutions #6

Course Instructor: Ethan Ackelsberg Teaching Assistant: Felipe Hernández

P1. Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space and $X : (\Omega, \mathcal{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ a random variable, i.e., $\forall A \in \mathcal{B}(\mathbb{R}), X^{-1}(A) \in \mathcal{F}$. Prove that the distribution function of $X, F_X : \mathbb{R} \to [0, 1]$ defined by $F(x) = \mathbb{P}(X \leq x)$, determines the measure induced by $X, \mathbb{P}_X : \mathcal{B}(\mathbb{R}) \to [0, 1]$ defined by $\mathbb{P}_X(A) = \mathbb{P}(X^{-1}(A))$.

Solution: Notice that $F(x) = \mathbb{P}(X \leq x) = \mathbb{P}_X((-\infty, x])$. In addition, for $y \leq x$, we have $F(x) - F(y) = \mathbb{P}_X((y, x])$. Thus, by this and the continuity of the measure, we conclude that F determines the values of \mathbb{P}_X in the semi-algebra:

$$S = \{(a, b] \mid a, b \in \overline{\mathbb{R}}\}. \tag{1}$$

As this semialgebra generates $\mathcal{B}(\mathbb{R})$, by Caratheodory's theorem - and the fact that \mathbb{P}_X is sigma finite by being a probability measure- we conclude that there is a unique extension to $\mathcal{B}(\mathbb{R})$.

- **P2.** Consider $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$ where λ is the Lebesgue measure. Let μ be a measure on $\mathcal{B}(\mathbb{R})$ that satisfies the following conditions:
 - i) For all $A \in \mathcal{B}(\mathbb{R})$ and $x \in \mathbb{R}$: $\mu(A) = \mu(A + x)$.
 - ii) $0 < \mu((0,1]) < \infty$.

Show that there exists $\alpha > 0$ such that $\mu = \alpha \lambda$.

Solution: Notice that the natural candidate for α is $\mu((0,1])$.

Let us first prove that for $a, b \in \overline{\mathbb{R}}$, $\mu((a, b]) = \alpha \lambda((a, b])$. Indeed, we start taking $a, b \in \mathbb{Z}$ with a < b. In this case, using that (i, i + 1] - i = (0, 1] for $i \in \mathbb{Z}$ and the fact that μ is invariant under translation

$$\mu((a,b]) = \mu\left(\bigsqcup_{i=a}^{b-1} (i,i+1]\right)$$

$$= \sum_{i=a}^{b-1} \mu((i,i+1])$$

$$= \sum_{i=a}^{b-1} \mu((0,1])$$

$$= (b-a) \cdot \alpha$$

$$= \alpha \cdot \lambda((a,b]).$$

For extending this for $a, b \in \mathbb{Q}$, we write $a = p_a/q$ and $b = p_b/q$ with $q \in \mathbb{N}$ and $p_a, p_b \in \mathbb{Z}$. Calling $p = p_b - p_a$ and using the translation invariance once again

$$\mu((a,b]) = \mu\left(\left(0, \frac{p_b - p_a}{q}\right) = \mu\left(\left(0, \frac{p}{q}\right)\right).$$
 (2)

On the ther hand, we observe that

$$\mu\left((0,p) = \mu\left(\bigsqcup_{i=0}^{q-1} \left(\frac{p}{q}i, \frac{p}{q}(i+1)\right)\right)$$

$$= \sum_{i=0}^{q-1} \mu\left(\left(\frac{p}{q}i, \frac{p}{q}(i+1)\right)\right)$$

$$= \sum_{i=0}^{q-1} \mu\left(\left(0, \frac{p}{q}\right)\right)$$

$$= q \cdot \mu\left(\left(0, \frac{p}{q}\right)\right).$$

In consequence

$$\mu((a,b]) = \frac{1}{q}\mu((0,p)) = \frac{p}{q} \cdot \mu((0,1]) = \alpha \cdot \lambda((a,b]).$$
 (3)

By continuity of the measures, we get that

$$\mu((a,b]) = \alpha\lambda((a,b]) \tag{4}$$

for each $a, b \in \mathbb{R}$. Hence, we conclude that the measure μ and $\alpha\lambda$ coincide in the generating semialgebra

$$S = \{ (a, b) \mid a, b \in \overline{\mathbb{R}} \}, \tag{5}$$

and by Carathéodory extension theorem, we conclude that $\mu = \alpha \lambda$ by the fact that both measures are sigma finite.

- **P3.** In this exercise, we prove that there exists a Lebesgue non-measurable subset of \mathbb{R} . For this, we define an equivalence relation on [0,1) by $x\mathcal{R}y$ if $y-x\in\mathbb{Q}$. By axion of choice, let $E\subseteq[0,1)$ be a set containing exactly one representative of each equivalence class, and for each $t\in\mathbb{Q}\cap[0,1]$ let $E_t=\{x+t \bmod 1\mid x\in E\}\subseteq[0,1)$.
 - (a) Show that the sets $(E_t)_{t\in\mathbb{Q}\cap[0,1]}$ are pairwise disjoint.
 - (b) Show that

$$\bigsqcup_{t \in \mathbb{Q} \cap [0,1]} E_t = [0,1).$$

- (c) Assume by contradiction that E is Lebesgue measurable. Show that for every $t \in \mathbb{Q} \cap [0, 1)$, E_t is Lebesgue measurable and $\lambda(E_t) = \lambda(E)$.
- (d) Conclude by arriving to a contradiction.

Solution: See Theorem 5.29 in the lecture notes.

P4. Consider λ as the Lebesgue measure on \mathbb{R} , and let A be a Lebesgue measurable set. Prove that if $\lambda(A) > 0$, then A contains a non-measurable set.

Solution: Let $V \subseteq [0,1)$ be a Vitali's set (this is a set E as in the proof of theorem 5.29 in the lecture notes). We first prove that every measurable subset C of V must have measure 0. Indeed, notice that $\{C+q\}_{q\in\mathbb{Q}\cap[0,1]}$ are all disjoint and measurable. Hence

$$\sum_{q\in\mathbb{Q}\cap[0,1]}\lambda(C+q)=\lambda(\bigcup_{q\in\mathbb{Q}\cap[0,1]}C+q))\leq\lambda([-1,2])=3,$$

as all terms in the sum are equal, it is imperative that $\lambda(C) = 0$.

Now, let A be a measurable set with $\lambda(A) > 0$. Without loss of generality, we can assume $A \subseteq [0,1]$, because we can always fine $n \in \mathbb{Z}$ with $\mu(A \cap [n,n+1]) > 0$, and then $(A-n) \cap [0,1]$ must have positive measure, so by replacing A by A - n we can assume this. Notice that

$$A = \bigsqcup_{q \in \mathbb{Q} \cap [0,1]} A \cap (V+q), \tag{6}$$

and if there is $q \in \mathbb{Q} \cap [0,1]$ such that $A \cap (V+q)$ is not measurable, we are done. In consequence, we can assume by contradiction that $A \cap (V + q)$ are all measurable, and then they must have measure 0, given that $A \cap (V + q) = (A - q) \cap V$. Consequently

$$0\leq \lambda(A)=\lambda(\bigcup_{q\in\mathbb{Q}\cap[0,1]}A\cap(V+q))\leq \sum_{q\in\mathbb{Q}\cap[0,1]}\lambda(A\cap(V+q))=0,$$
 which is a contradiction.